Spatial heterogeneity, host movement and vector-borne disease

₂ transmission

- Miguel A. Acevedo^{1,*}, Olivia Prosper², Kenneth Lopiano³, Nick Ruktanonchai⁴, T. Trevor Caughlin⁴,
- ⁴ Maia Martcheva⁵, Craig W. Osenberg⁴, David L. Smith⁶.
- 5 1 University of Puerto Rico-Río Piedras, Department of Biology, San Juan, PR, USA
- 6 2 Dartmouth College, Department of Mathematics, Hanover, NH, USA
- 7 3 Statistical and Applied Mathematical Sciences Institute, Research Triangle Park, NC,
- 8 USA
- ⁹ 4 University of Florida, Department of Biology, Gainesville, FL, USA
- ¹⁰ 5 University of Florida, Department of Mathematics, Gainesville, FL, USA
- ¹¹ 6 Department of Epidemiology and Malaria Research Institute, John Hopkins Bloomberg
- School of Public Health, Baltimore, MD, USA
- * E-mail: miguel.acevedo7@upr.edu

Supporting Information 3

15 Two-patch analysis

- 16 We first made the following assumptions:
- 17 1. Each patch has identical parameters, with the exception of the ratio of mosquitoes to humans m_1 and
- m_2 .
- ¹⁹ 2. $\bar{m} := \frac{m_1 + m_2}{2}$, the average of m_1 and m_2 , is fixed.
- ²⁰ 3. $\bar{\alpha} := \frac{m_1}{m_2}$, where, without loss of generality, $m_1 > m_2$ so that $\alpha \in (1, \infty)$.

Theorem 0.0.1. Under the above assumptions, R_0 is an increasing function of the variance

$$V = \frac{(m_1 - \bar{m})^2 + (m_2 - \bar{m})^2}{2}.$$

- ²¹ Proof. Note that $\frac{\partial R_0}{\partial V} = \frac{\partial \bar{\alpha}}{\partial V} \cdot \frac{\partial R_0}{\partial \bar{\alpha}}$. We will first show that $\frac{\partial R_0}{\partial \bar{\alpha}} > 0$.
- Assumptions 2 and 3 imply that

$$(m_1, m_2) = \left(\frac{2\bar{\alpha}\bar{m}}{\bar{\alpha} + 1}, \frac{2\bar{m}}{\bar{\alpha} + 1}\right). \tag{1}$$

Using the definition of R_0 described in the previous section, it is straightforward to show that R_0 for our two-patch system is a special case of the R_0 derived in [1]. In [1],

$$R_0 = \frac{1}{2\sigma} \left(s_1 t_2 + s_2 t_1 + \sqrt{(s_1 t_2 + s_2 t_1)^2 - 4s_1 s_2 \sigma} \right),$$

where $\sigma = k_{12}r_1 + k_{21}r_2 + r_1r_2$, $s_i = \frac{\alpha_i\beta_i}{g_i}$, and $t_i = r_i + k_{ji}$. Since all patch parameters, except for m_1 and

 m_2 are identical in this manuscript, we take $k=k_{12}=k_{21},\,r=r_1=r_2,\,\beta=\beta_1=\beta_2,$ and $g=g_1=g_2$

Subsequently, we have $\sigma = 2kr + r^2$, $s_i = \frac{\alpha_i \beta}{g}$, and $t = r + k = t_1 = t_2$.

Note that
$$s_1t_2 + s_2t_1 = s_2t_2\left(\frac{s_1}{s_2} + \frac{t_1}{t_2}\right) = s_2t_2(\bar{\alpha} + 1)$$
. So, $R_0 = \frac{s_2t}{2\sigma}\left(\bar{\alpha} + 1 + \sqrt{(\bar{\alpha} + 1)^2 - 4\bar{\alpha}\frac{\sigma}{t^2}}\right)$.

Recall that $s_2 = m_2 \eta$, where $\eta = a^2 b c e^{-gn}/g$ (under the simplifying parameter assumptions). From the expression for m_2 , we obtain $s_2 = \frac{2\eta \bar{m}}{\bar{\alpha} + 1}$, which yields (after simplification) an expression for R_0 as a function of $\bar{\alpha}$:

$$R_0(\bar{\alpha}) = \eta \bar{m} \frac{t}{\sigma} \left(1 + \sqrt{1 - 4 \frac{\bar{\alpha}}{(\bar{\alpha} + 1)^2} \cdot \frac{\sigma}{t^2}} \right).$$

Now, it remains to show that $\frac{\partial R_0}{\partial \bar{\alpha}} > 0$ on $(1, \infty)$. Only the argument of the square root in R_0 depends

on
$$\bar{\alpha}$$
. Thus, to determine the sign of $\frac{\partial R_0}{\partial \bar{\alpha}}$, we first note that $\frac{\partial}{\partial \bar{\alpha}} \left(\frac{\bar{\alpha}}{(\bar{\alpha}+1)^2} \right) = \frac{1-\bar{\alpha}}{(\bar{\alpha}+1)^3} < 0$ on $(1,\infty)$.

From this, it is clear that R_0 is an increasing function of $\bar{\alpha}$.

We conclude the proof by writing V as a function of $\bar{\alpha}$, and illustrating that $\frac{\partial \bar{\alpha}}{\partial V}$ is also positive. Substituting Equation (1) into the expression for the two-patch variance V, we find that $V(\bar{\alpha}+1)^2 = \bar{m}^2(\bar{\alpha}-1)^2$. Implicit differentiation with respect to V, and treating $\bar{\alpha}$ as a function of V, yields:

$$\frac{\partial \bar{\alpha}}{\partial V} = \frac{(\bar{\alpha} + 1)^3}{4\bar{m}^2(\bar{\alpha} - 1)},$$

which is positive. In the above calculation, we used the fact that $V(\bar{\alpha}+1)^2 = \bar{m}^2(\bar{\alpha}-1)^2$ to write the expression in terms of only \bar{m} and $\bar{\alpha}$. Consequently, R_0 is an increasing function of V.

Proposition 0.0.2.
$$\frac{\partial}{\partial k} \frac{\partial R_0}{\partial \bar{\alpha}} < 0.$$

Proof. Calculating $R_0'(\bar{\alpha})$ explicitly, we obtain: $R_0'(\bar{\alpha}) = 2\eta \bar{m} \left(1 - 4\frac{\bar{\alpha}}{(\bar{\alpha}+1)^2} \cdot \frac{\sigma}{t^2}\right)^{-\frac{1}{2}} \cdot \frac{\bar{\alpha}-1}{(\bar{\alpha}+1)^3} \cdot \frac{1}{t}$. Clearly, $\frac{\partial}{\partial k} \left(\frac{1}{t} \right) < 0$ since t = r + k, and $\frac{\partial}{\partial k} \left(\frac{\sigma}{t^2} \right) = -\frac{2rk}{(r+k)^3} < 0$. Since 1/t and σ/t^2 are both decreasing functions of k and no other terms in $\frac{\partial R_0}{\partial \bar{\alpha}}$ depend on k, we observe that $\frac{\partial R_0}{\partial \bar{\alpha}}$ must decrease with k.

Theorem 0.0.3. The total equilibrium prevalence in the two-patch system, $I^* = I_1^* + I_2^*$ is an increasing function of the variance V.

Proof. The equilibrium equations for our two-patch system are

$$0 = ac \frac{I_i}{N} (e^{-gn} - z_i) - gz_i, \quad i = 1, 2$$

$$0 = m_i abz_i (N - I_i) - rI_i - kI_i + kI_j, \quad i = 1, 2$$

Solving for z_i in the first equation and substituting this quantity into the second equation, we obtain the equilibrium equations

$$0 = \frac{m_i a^2 b c e^{-gn}}{a c I_i + g N} (N - I_i) - (r + k) I_i + k I_j, \quad i = 1, 2,$$

which is a special case of the equilibrium equations in [1].

From equations (33)-(34) in [1],

$$\frac{\partial I_1^*}{\partial \alpha_1} = -\frac{C_{\alpha_1} A_2}{A_1 A_2 - B_1 B_2} \tag{2}$$

$$\frac{\partial I_1^*}{\partial \alpha_1} = -\frac{C_{\alpha_1} A_2}{A_1 A_2 - B_1 B_2}
\frac{\partial I_2^*}{\partial \alpha_1} = \frac{C_{\alpha_1} B_2}{A_1 A_2 - B_1 B_2},$$
(2)

where

$$A_{i} = \alpha_{i}\beta(N_{i}^{*} - 2I_{i}^{*}) - t(2\beta I_{i}^{*} + gN_{i}^{*}) + k\beta I_{j}^{*}$$

$$= \alpha_{i}\beta(N - 2I_{i}^{*}) - t(2\beta I_{i}^{*} + gN) + k\beta I_{j}^{*}$$

$$B_{i} = k(\beta I_{i}^{*} + gN_{i}^{*})$$

$$= k(\beta I_{i}^{*} + gN)$$

$$C_{\alpha_{1}} = \beta I_{1}^{*}(N_{1}^{*} - I_{1}^{*})$$

$$= \beta I_{1}^{*}(N - I_{1}^{*})$$

Recall that $\alpha_1 = m_1 a b e^{-gn} = \frac{2\bar{\alpha}\bar{m}}{\bar{\alpha}+1} a b e^{-gn}$.

This fact, along with equations (2)-(3), implies that

$$\frac{\partial I^*}{\partial \bar{\alpha}} = \frac{\partial \alpha_1}{\bar{\alpha}} \frac{\partial I^*}{\partial \alpha_1} = \frac{2\bar{m}abe^{-gn}}{(\bar{\alpha}+1)^2} \cdot \frac{C_{\alpha_1}(B_2 - A_2)}{A_1A_2 - B_1B_2}.$$

Proposition 5.0.1 in [1] states that $A_1A_2 - B_1B_2 > 0$, and the proof of this proposition states that $A_2 < 0$. Thus, $B_2 - A_2 > 0$ implies that $\frac{\partial I^*}{\partial \bar{\alpha}} > 0$. Recall that in the proof of the previous theorem, we showed that $\partial \bar{\alpha}/\partial V > 0$; consequently, I^* is an increasing function of the variance V.

47 References

46

1. Prosper O, Ruktanonchai N, Martcheva M (2012) Assessing the role of spatial heterogeneity and human movement in malaria dynamics and control. Journal of Theoretical Biology 303: 1–14.